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We analyzed SFTSV RNA levels in the ticks after they 
molted into adults. We extracted total RNA prepared 
from homogenates of ticks by using TRIzol reagent 
(Thermo Fisher Scientific, https://www.thermofisher.
com) according to manufacturer’s instructions. We ana-
lyzed samples by using a One-Step SYBR PrimerScript 
Reverse Transcription PCR Kit (TaKaRa) on an Applied 
Biosystems QuantStudio (https://www.thermofisher.
com) and measured each sample in triplicate. Primers 
were designed as previously described (32).

Results

Tick Distribution and Ploidy Analysis
There were 1,328 Asian longhorned ticks confirmed 
by 16S rRNA sequencing, of which 271 (20.4%) live 
ticks were further submitted for ploidy analysis by 

flow cytometry (255 ticks) or by mitochondrial se-
quencing (16 ticks) (Appendix Table 1). Ploidy testing 
showed a peak for the bisexual (diploid) population 
at the 66 position and for the parthenogenetic (trip-
loid) population at the 99 position (Figure 1). Of ticks 
submitted for ploidy analysis, 186 (69%) of 271 were 
identified as bisexual and 85 (31%) of 271 as parthe-
nogenetic. Bisexual ticks were detected in 55 (75%) of 
73 counties, parthenogenetic ticks were detected in 30 
(42%) of 73 of counties, and a mixture of both popula-
tions was detected in 12 (16%) of 73 counties (Figure 
2; Appendix Table 1). In 18 (25%) of 73 counties, only 
parthenogenetic ticks were found, and in 43 (59%) of 
73 counties, only bisexual ticks were found.

Correlation of SFTSV with Bisexual and  
Parthenogenic Ticks

Figure 5.	Phylogenetic	analysis	of	bisexual	(A)	and	
parthenogenetic	(B)	Asian	longhorned	ticks	in	China	and	other	
countries.	Maximum-likelihood	trees	were	established	with	
mitochondrial	genomes	of	ticks	collected	in	the	Asian‒Pacific	
region.	Numbers	indicate	multiple	Asian	longhorned	ticks	from	the	
same	county.	Scale	bars	indicate	nucleotide	substitutions	per	site.
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SFTS cases showed a strong correlation with the par-
thenogenetic population (R2 = 0.685, p<0.001) but 
almost no correlation with the bisexual population 
(R2 = 0.026, p = 0.501) (Figures 3, 4). In the highly 
endemic Dabie Mountain area (located at the bor-
der of Henan, Anhui, and Hubei Provinces in cen-
tral China), 66% of the collected Asian longhorned 
ticks were parthenogenetic in 11 of 14 counties 
(Appendix Table 1). These results suggest that the 
parthenogenetic populations of Asian longhorned 
ticks are strongly associated geographically with 
cases of SFTS.

Phylogenetic Analysis of Bisexual and  
Parthenogenic Ticks
For each county, 1 bisexual or parthenogenetic Asian 
longhorned tick was submitted for mitochondrial se-
quencing. We obtained 81 whole mitochondrial ge-
nomes from 73 ticks from China ticks and 8 ticks from 
outside China (Appendix Table 2). Results clearly 
show that the parthenogenetic and bisexual popula-
tions are divided into 2 distinct lineages that can be 
discriminated by 1 T deletion at position 8497 in the 
untranslated region (Figure 5; Appendix Figures 2–5). 
This finding suggests that the parthenogenetic popu-
lation might have originated from 1 event without 
gene exchange. The mean GD between all sequences 
was 0.0078, as measured by the nucleotide substitu-
tion rate. The parthenogenetic strains from New Zea-
land and Australia were similar to the parthenogenet-
ic strain from Okayama, Japan (mean GD 0.0003). The 
parthenogenetic strain from Kagoshima, Japan, was a 
close relative to strains collected from Beijing, Hubei, 
and Henan, China (Appendix Figure 1), which are 
geographically separate. The strain from New Jersey, 

USA, was similar to the strain from Jeju Island, South 
Korea (GD 0.0001).

Genetic Diversity
Despite the loss of sexual reproduction, high genetic 
diversity has been reported in the asexual popula-
tions of many insect species (32). The Pi values for the 
2 populations, as measured by the mitochondrial ge-
nome, were 0.00249 for bisexual and 0.00188 for par-
thenogenetic. These results indicate that the genetic 
diversity of the bisexual and parthenogenetic popula-
tions was similar and that the parthenogenetic popu-
lation might have diverged from the bisexual popula-
tion at an early age.

Dispersal Index of Bisexual and Parthenogenic Ticks
When compared with bisexual ticks, we found 
that parthenogenetic ticks have a wider pairwise 
geographic distance distribution and a narrower 
pairwise genetic distance distribution (Figure 6, 
panel A). The dispersal index for parthenoge-
netic ticks was significantly higher than that for 
bisexual ticks (t = 7.67, p<0.001), and the mean 
dispersal index for parthenogenetic ticks (910,228) 
was 2.3 times higher than that for bisexual ticks 
(393,156) (Figure 6, panels B, C). These results 
indicate that parthenogenetic ticks have a higher  
dispersal capacity.

Correlation between Migratory Birds and Ticks
We collected and examined migratory birds for Asian 
longhorned ticks in Penglai City, which is an area 
to which SFTSV is highly endemic and is located in 
the Asia–Pacific migratory route (Appendix Figure 
1). We netted 95 birds in 17 species. However, 54 

Figure 6. Phylogeographic	analysis	of	bisexual	and	parthenogenetic	Asian	longhorned	ticks,	China. A)	Distribution	of	bisexual	and	
parthenogenetic	Asian	longhorned	ticks	in	pairwise	genetic	distance	and	pairwise	geographic	distance.	B,	C)	Distribution	(B)	and	
difference	(C)	of	dispersal	index	between	bisexual	and	parthenogenetic	Asian	longhorned	ticks.	Horizontal	red	line	in	the	violin	plot	
indicates	the	mean	dispersal	index,	shaded	blue	areas	indicate	the	kernel	density	estimation,	and	error	bars	indicate	the	maximum	(top	
line) and minimum (bottom line) values.
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Asian longhorned ticks were found on only 4 species: 
Naumann’s thrush (Turdus naumanni), grey-backed 
thrush (Turdus hortulorum), great tit (Parus major), 
and chestnut-eared bunting (Emberiza fucata). Only 
27 ticks were recovered from these birds, of which 19 
(70%) were identified as Asian longhorned ticks; 17 
(89%) of 19 Asian longhorned ticks were parthenoge-
netic (Table). All recovered Asian longhorned ticks 
were nymphs.

Tick Diversity in Penglai City
Phylogenetic analysis showed that the mitochondrial 
sequences of the parthenogenetic Asian longhorned 
ticks collected in Penglai City from vegetation were 
highly diverse when compared with those from 15 
provinces in China (Appendix Figure 6). These data 
suggest that ticks from many different provinces were 
present in Penglai City and were probably spread to 
this region by migratory birds.

Virus Acquisition by Ticks and Transstadial Passage 
for Spreading SFTSV
We detected a robust viremia in mice inoculated 
with SFTSV (Figure 7, panel A). After feeding un-
til engorgement and molting, the parthenogenetic 
and bisexual populations showed average titers of 
3 log RNA copies/mg without obvious differences  
(Figure 7, panel B). The SFTSV-acquisition and  

transstadial passage efficiency of the parthenogenetic  
population appeared comparable with that of the bi-
sexual population.

Discussion
We found that the parthenogenetic population of 
Asian longhorned ticks is more widely distributed in 
China than previously believed and that the distribu-
tion is highly correlated with regions to which SFTSV 
is endemic. Phylogeographic analysis suggests that the 
parthenogenetic Asian longhorned tick population has 
spread more rapidly over a greater distance than the 
bisexual population, and assessment of virus acqui-
sition and transstadial passage showed that bisexual 
and parthenogenetic populations were comparable in 
maintaining local transmission of SFTSV. Although 
only a small number of ticks were recovered, parthe-
nogenetic Asian longhorned ticks were the dominant 
variety found in migratory birds collected in an area to 
which SFTS is endemic. We suggest that these results 
strongly support the hypothesis that parthenogenetic 
Asian longhorned tick populations are responsible for 
the rapid spread of SFTSV within China, most likely 
through being disseminated by migratory birds.

If, as we suggest, migratory birds have played 
a major role in the spread of parthenogenetic Asian 
longhorned ticks, then this role would partially 
explain the wide distribution of these ticks from 

 
Table. Haemaphysalis longicornis ticks collected from migratory birds and their hosts in Penglai City, China, 2021 

Avian host No.	birds	examined No. birds with ticks No. ticks 
No. Asian 

longhorned ticks Parthenogenetic,% 
Turdus naumanni 45 8 11 3 33 
Turdus hortulorum 7 2 8 8 100 
Parus major 1 1 5 5 100 
Emberiza fucata 1 1 3 3 100 

 

Figure 7.	Susceptibility	of	
bisexual	and	parthenogenetic	
Asian longhorned ticks 
to severe fever with 
thrombocytopenia	syndrome	
virus	(SFTSV),	China.	Groups	
of	bisexual	or	parthenogenetic	
nymph	Asian	longhorned	
ticks	were	fed	separately	on	
1 IFNAR−/−	(interferon	α/β	
receptor	knockout)	C57/BL6	
mouse	that	was	intraperitoneal	
inoculated	with	2	x	103	focus-
forming units of SFTSV. A) 
Viremias of IFNAR−/−	C57/
BL6 mice were monitored by 
using	real-time	PCR	during	tick	
feeding. B) SFTSV infection 
in the Asian longhorned ticks 
were	tested	by	real-time	PCR	after	molting	into	adults.	Each	dot	or	square	indicates	1	tick.	Black	horizontal	bars	indicate	means.	
NS,	not	significant.
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the cold, far eastern region of Russia to the tropi-
cal areas of Australia and the Fiji Islands. However, 
the role of livestock, wild mammals, companion 
animals, and humans in translocation of parthe-
nogenetic Asian longhorned ticks should not be  
overlooked (22).

Migratory birds are known to be carriers of ticks. 
Penglai City is 1 of the most endemic areas for SFTS 
and is a key passage in the northern part of East 
Asian–Australasian Flyway. In this area, 96% of Asian 
longhorned ticks were parthenogenetic and showed 
extremely high diversity (Appendix Figure 6). Dur-
ing a spring bird survey in Penglai City during 2021, 
we found that Asian longhorned ticks were found in 4 
bird species (Turdus naumanni, Turdus hortulorum, Pa-
rus major, and Emberiza fucata), and 89% of them were 
parthenogenetic. Among the 4 bird species, 3 of them 
(Turdus naumanni, Turdus hortulorum, and Emberiza 
fucata) migrate between eastern Asia and Siberia, and 
are occasionally found in Alaska (https://www.ebird.
org). The preferred habitats for these 4 species are 
grasslands and bushes, which are also the preferred 
habitats of Asian longhorned ticks. These results sug-
gest that migratory birds have a major role in long-
range movement of parthenogenetic ticks within Chi-
na and potentially even transoceanic spread of SFTSV.

Parthenogenetic Asian longhorned ticks are 
also implicated in the spread of a pathogenic form 
of the blood parasite Theileria orientalis throughout 
the Asia–Pacific region (18). Asian longhorned ticks 
are purported to have been introduced to Australia 
in the 19th century from northern Japan and later 
disseminated to New Zealand, New Caledonia, 
and Fiji. This theory is supported by phylogenet-
ic results of this study, which show that the New 
Zealand and Australia Asian longhorned ticks are 
alike and closely resemble the parthenogenetic 
strain from Okayama, Japan (33). T. orientalis para-
sites have been present in Australia for >100 years, 
having been introduced with the vector tick, and 
until 2006 caused only minor signs in livestock (34). 
During 2006, the pathogenic Ikeda genotype of T. 
orientalis was introduced from eastern Asia into 
New South Wales, Australia (35) and by 2014, had 
spread to most of the states in Australia (36). The 
recent spread of T. orientalis parasites across the 
Asia–Pacific region and into North America high-
lights the risk for rapid disease agent transmission 
into areas in which a competent vector (Asian long-
horned tick) is already established. Thus, although 
SFTSV has not yet been detected in the Western 
Hemisphere, the presence of Asian longhorned 
parthenogenetic ticks in several countries within 

the study region presents a clear risk for future 
emergence of this virus.
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